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The Propagation Characteristics of

Wave-Guiding Structures with Very Thin

Superconductors; Application to Coplanar

Waveguide YBA2CU307_z Resonators
Boele B. G. Klopman, Gerrit J. Gerritsma, and Horst Rogalla

Abstract— We have analyzed the propagation characteristics

of wave-guiding structures with superconductors which are thin
compared to the magnetic penetration depth. The complex prop-

agation constant is evaluated within the framework of the mod-
ified spectral domain method without the need for numerical

calculations in the complex plane. Good agreement is found

with the results of other methods. The numerical analysis is
instrumental in deducing results for the penetration depth and the

surface resistance of YBa2 CU3 OT_Z thin films on sapphire with

a PrBaz CU307_~ buffer layer. We confirm recent observations
of a non-single-gap BCS temperature dependence.

I. INTRODUCTION

T HE SURFACE impedance of superconductors is charac-

terized by a low resistance and a relatively high reactance.

This makes superconductors suitable for microwave applica-

tions, which are impossible if normal conductors are used.

As a result of the low surface resistance, the power losses

in superconductors are low, which offers the possibility of

low-loss filters with a sharp frequency response [1], [2]. The

surface reactance represents the stored energy in the supercon-

ductor. If the stored energy is increased at a constant level of

transmitted microwave power, the phase velocity is reduced,

since the energy flux remains the same. Therefore, the surface

reactance has the effect of slowing down the electromagnetic

wave. Transmission lines exhibit a high slowing factor if the

geometry favors the stored energy relative to the transmitted

energy. The stored kinetic energy of the charge carriers in

a superconducting film increases as the thickness of the film

is reduced below the magnetic penetration depth. This is a

consequence of the increased current density necessary to

support the same current or magnetic field. The transmitted

energy on the other hand is reduced by choosing a small

geometry. In this way very compact microwave devices, such

as filters and delay lines, can be fabricated [3], [4]. The

miniaturization is also made possible by the low surface

resistance. In addition, the influence of the surface reactance

also can be used to determine the penetration depth.
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Both the design of microwave devices and the characteriza-

tion of the superconductors rely on the accurate calculation of

the propagation characteristics of superconducting transmis-

sion lines, Superconducting microstrip lines with very slow

phase velocities have been analyzed by a spectral domain

method, modified by complex resistive boundary conditions

[5]. The modification is necessary because of the coupling

of the electromagnetic field from one side of the film to

the other side. We will show that the complex propagation

constant (attenuation and wave number) of different wave-

guiding structures can be evaluated within the framework

of the modified spectral domain method without numerical

calculations in the complex plane. Expressed in transmission

line components, this corresponds to the calculation of the re-

sistance and kinetic inductance of the structure. The numerical

analysis is applied to coplanar waveguide transmission lines.

The suitability of the method is demonstrated by the inves-

tigation of experimental YBa2Cu3 07–. coplanar waveguide

resonators. It is not possible to obtain a high slowing factor

using a coplanar waveguide with reasonable dimensions. The

uniplanar metallization makes the transmitted energy much

less sensitive to the separation of the strips than in the case of

microstrip lines. However the effect of the surface reactance on

the resonance frequency of the resonator is significant enough

to determine the penetration depth. Results for the surface

resistance are obtained from the observed quality factor of

the resonator. Investigations of the surface impedance (surface

resistance and penetration depth) are of importance, since

these can help to clarify the nature of the high-temperature

superconductors. The lack of a detailed picture of the coupling-

mechanism of the electrons in these superconductors is accom-

panied by observations of non-BCS behavior [6], [7].

We start with an analysis of the surface impedance of a su-

perconducting or normal film of arbitrary thickness. This also

naturally leads to the complex resistive boundary conditions

in the case of very thin films.

II. THEORY

A. Surface Impedance of a Film of Arbitrary Thickness

To investigate the surface impedance of a superconducting

film, we first demonstrate how the Maxwell equations have
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to be modified, assuming the two-fluid model and the London

equations give a valid description of the superconductor. De-

spite the phenomenological nature, much of the characteristic

features of the electrodynamics is easily visualized by this

approach, at least qualitively.

The electrons in a superconductor can be divided in normal

and superconducting electrons, according to the twe-fluid

model. Therefore the total current density J = Jn + Js
consists of a dissipative normal part Jn and a superconducting

dissipationless part J,. The normal part Jn corresponds to the

conductivity of the normal electrons:

Jn = ~nE, (1)

giving rise to power losses. The superconducting electrons

are described by the London equation [8]:

8J, E

at = ~OA2’
(2)

which represents the free acceleration of the electrons in an

electric field. The magnetic penetration depth is denoted by A.

For time-harmonic electric fields, (1) and (2) can be incor-

porated in the first Maxwell equation V x H = YE, provided

y is written as:

y=c7+jw&. (3)

Here the complex conductivity is defined as:

o = on —J”os> (4)

with:

1
g~ = (5)

wpl)A2 “

In (3) the last term represents the displacement current. The

case of a normal conductor is obtained by setting a, = O.

The second Maxwell equation V x E = –zH remains

unchanged:

~ = jwpo. (6)

So the two-fluid model and the London equations lead to

the introduction of a complex conductivity. Although this

complex conductivity is a result of the phenomenological

London equations, a comparison can be made with more

theoretically based results for the complex conductivity [9].

This yields values for an and A on the basis of the BCS theory.

It is also possible to use the phenomenological Gorter-Casimir

expressions [10] for on and A.

The interpretation of the complex conductivity is made clear

by manipulating the two Maxwell equations to obtain for the

supplied time-averaged complex power density p.:

= +n/E12+ ;jc@2/J.12 + IH12) –@ElE\2

=~~+@4~K + =M – =E). (7)

So the normal (real) part of the conductivity corresponds

to a dissipated power density Fd, while the superconducting

(imaginary) part is related to the kinetic energy density ~K

of the superconducting electrons. In (7) =M and ~E are the

stored magnetic and electric energy densities (all quantities

time-averaged).

Expression (7) will be used to evaluate the kinetic and mag-

netic inductance of an infinite film of arbitrary thickness t. First

we develop expressions related to the complex power. In the

following the displacement current will be neglected, which

is a good approximation for most conductors at microwave

frequencies.

We consider plane waves, propagating in the z-direction,

perpendicular to the film. The film boundaries, are located at

z = O and z = t. The magnetic and electric field in the

interior of the film are given by [11]:

IZv(z) = llole-~~” + ~oze~~’, (8)

Ez(z) = q(l+ole-$~z – ~oze~~z).

0<.z<t (9)

The wave number k and the intrinsic impedance q follow from

the Maxwell equations:

k=+, (lo)

q = ~z/y. (11)

In the case of a normal conductor this yields:

k = /wp@n/2(1 – j)

=(1 - j)/C$, (12)

‘q= l/~Po/’k(l + j)

= ;upo6(l +j), (13)

where 6 is the classical skin depth:

8 = ~=. (14)

For a superconductor k and q are given by (assuming

an << a.):

k = /a(an/217. – j)

= ((A/6)2 - j)/A, (15)

q = =(0./20s + j)

=(.q@J((A/6)2 + j). (16)

We will see that R, = Re (q) is related to power losses,

while X. = Im (q) is a measure of the stored energy. So

in superconductors the power losses are usually much smaller

than the stored energy (J << b for on << m.). In addition, in

this case the power losses are much smaller than in a normal

conductor.

Invoking tangential continuity of H at the boundaries,

JYV(0) = 271, IYv(t) = Hz, yields:

lly(z) = [HI sin (k(t – z))+ IIz sin (kz)]/ sin (M), (17)

E.(z) =q[Ifl cos (k(t – z)) – H2 cos (kz)]/j sin (M). (18)
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The complex power supplied to the film per unit area is

evaluated as:

P = ;_E.(o)x H;(o) – ;E.(t) x H;(t)

= ;zsl/H1 – H212 + ;Z.S(IH112 + IH212), (19)

where the effective surface impedances ZS1 and 2S2 are

defined:

2.1=. q (20)
j sin (M)’

2.2 ==‘q
Cos (Id) – 1

(21)
j sin (M) “

Two limiting cases are of particular interest. Firstly, for a

very thin film (Iktl << 1, i.e., t << A, 8) we have:

2.1=*=:,

2.2 = ;jwflot, (t< A,6) (22)

while in the case of a relatively thick film:

2.1= 0,2.2= ‘r/ (t> A,6) (23)

Thus the second term in (19) is dominant if t > J, 6,

which actually is the bulk material case. Indeed we find

the well-known expression for the ccimplex power [1 i], with

the addition that the magnetic field at both film boundaries

contributes. In this case the surface impedance equals the

intrinsic wave impedance. For t << A,6 only the first tertn

in (19) survives. In this case the impedance depends inversely

proportiomd on the thickness of the film. To be specific:

R.l = Rs2.A/t, (t< A, 6) (24)

X.1 = x.A/t. (25)

Here R. and X, denote the surface resistance and reactance

for bulk material: q = R, + jXs. So for very thin films, the

effective surface resistance is by a factor 2A/t higher than

the bulk value, the surface reactance by a factor A/t. This

correction should be kept in mind when data for very thin

films are to be interpreted.

In the intermediate range of thicknesses, the complex power

depends on the exact values of 271 and Hz. In general no

overall impedance cart be defined uniquely. An exception

occurs if the field is confined to one side of the film (Hl
or Hz = O), meaning that the film represents a real wall. Then

the surface impedance reads as:

2. = –jq cot (M),(Hl or Hz = O) (26)

which is in agreement with the usual expression for this case

[12].

The general pattern of Zsl and 2.2 is shown in Fig. 1 at a

frequency f = 10 GHz, with a penetration depth A = 100 nm

and skin depth 6 = 100A. Clearly, 2$1 reaches its limiting

value (see (24), (25)) not far below t/J = 1. For ZSZ to

N-

100

\

10 F
\

1 :
\
\

.1:

.01 .1 1 10 100
tn

Fig. 1. The effeetive surface impedances 2.1 = R, 1 + jA’~ 1 (dominant

if t<<A)and 282 = R,z + jX,2 (dominant if t>>A)as a function of

t/A. The resistive and reactive parts are normalized to the quantities of bulk

material (t >> A).

reach its limiting value (23) for t > A a somewhat stronger

condition on t/A is required; depending on the acceptable

errors, the value of t/A can be as high as approximately 5,

The difference in the asymptotic behavior of Z.l and 2s2 can

be understood, recalling that the current density at both sides

of the film falls off as exp (– d/ A) inside the conductor, where

d is the distance from the boundary of the film. As soon as t

becomes comparable to A or smaller, the current density inside

the film is almost uniform. However, if the current density is

to die out in the interior of the conductor, the distance to both

sides of the film should be several penetration depths.

We now turn to the calculation of the kinetic inductance

LK and the magnetic inductance LM for an infinite film. Per

unit length those inductances are related to the time-averaged

kinetic and magnetic energy density through (cf. equation (7)):

Here I is the amplitude of the total current through the film:

I=
1/

J. dydz = (Hl – H2)w, (28)

where w is the width of the film. From (27) we obtain for

LK and LM:

LK = ~OA2
//

IJS12dydz/12,

LM = p.
//

lH12dydz/12.

(29)

(30)

Again two limiting cases are considered. The inductances

LK and LM are equal fort> A, 6, because (neglecting o.):

H2 H2 E 2

z= z z
= Irpl-z = A’. (31)

Evaluating the integrals yields in this transversely uniform

case:

VOA
LK. LM=G. (t> t, 6) (32)
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The property of equal LK and LM is generally valid for bulk

superconductors [13]. For a very thin film on the other hand,

we obtain for L~:

(33)

while LM approaches zero. Thus in this range of thicknesses

LK is a factor 2A/t higher than in the case of relatively thick

films. The increased value of LK results in a higher slow-

ing factor of the electromagnetic waves. The accompanying

increase in the losses is usually not a problem, since R~ is

very low for superconductors, cf. (24). Structures with a high

slowing factor contribute to the realization of very compact

microwave circuits [3], [4]. In addition, by measuring the slow-

wave behavior it is possible to determine A, because of the

role it plays in LK.

B. Propagation Characteristics of Wave-Guiding

Structures with Non-Perfect Conductors

In commonly used wave-guiding structures, we are not

dealing with plane waves, as was supposed in the previous

section. In general the modes are at best quasi-TEM, but

generally hybrid of nature. We will analyze the influence

of a non-perfect conducting (i.e., normal or superconducting)

metalliztition with the restriction to the case of very thin films,

where the thickness tof the metallization is much smaller than

the penetration depth A and the skin depth 6: t << A, 8. In this

limit it can be shown on the basis of (17) and (18) that the

boundaty conditions for plane waves can be expressed as:

El = E2 = Rj, (34)

nx(H1– H2)=j, (35)

with:

R=; =Z’sl. (36)

The subscripts 1 and 2 refer to both sides of the film. The

quantity j dehotes the total current density per unit length

through the cross-section of the film, n is a unit normal vector

to the film.

It is assumed that the complex resistive boundary conditions

(34) and (35) locally remain valid for non-plane waves. This

is an approximation, especially at the sharp corners of the

metallization. However, the method has been proved to be

quite accurate [5].

The spectral domain method can be applied for a full wave

analysis of different wave-guiding structures, such as coplanar

waveguide transmission lines (Fig. 2) [14]. The fact that the

metallization strips are non-perfect very thin conductors is

taken into account by a modification of this method through

the complex resistive boundary conditions (34) and (35), as

pointed out by Pond et al. [5]. Subsequent application of the

modified spectral domain method can be found in several

works [15], [16].

In short, the electric field at the strips interface (z = hl +hz)

is expressed in terms of the current density in the strips by

means of the so-called dyadic Green’s function. The Green’s

function corresponds to the case of perfect conductors of zero

x

a

b

Fig. 2. Geometry of a coplanar waveguide enclosed in a box with strips
of thickness t.Unless otherwise stated, the spectral domain calculations are
performed at a frequency f = 10 GHz with geometrical parameters G. = 10,
and a = 18, b = 10, s = 0.5, w = 0.2, hI = 9,h2 = 0.635, and
h3 = 8.365 mm.

thickness. In this limit the edge condition [17] implies that the

tangential field and current components behave like p– li2 for

vanishing radial distance p from the edge. Invoking boundary

condition (34) establishes a relation between the electric field

in the slots and the currents in the strips. The electric field

in the slots is expanded into a set of basis functions. If

these basis functions are chosen to satisfy the edge condition,

normally only a few basis functions are needed for an accurate

description of the field pattern. The drawback of this approach

is the appearance of a logarithmic divergence for quantities

which involve the integration of the squared field or current

components [18], [19]. In the presentation of the numerical

results we will discuss this problem in more detail.

The electric field in the slots and the currents in the

strips are non-zero in complementary regions. This means that

Galerkin’s method can be applied to obtain a homogeneous

system of linear equations with the weighting factors in the

series of basis functions as unknown coefficients [20]. The

propagation constant v of the structure corresponds with

non-trivial solutions of this system of equations, meaning a

determinant of zero:

det [~(jT, jZ,l)] = O. (37)

Here, ~ denotes the matrix corresponding to the system of

equations.
In general the propagation constant is a complex number

with attenuation constant a and wave number /3: v = a + j~,

This would imply the use of a root finding algorithm in the

complex plane. However, in the lossless case (R~l = O and

a = O) the determinant is real, as is emphasized by the

arguments j~ and jZ.l. Then (37) becomes:

det [~(–,B, –X~l)] = O. (38)

In the case of a small amount of conductor losses in the

strips, it is also possible to calculate the attenuation constant

a without explicit complex numerical computation. This is

demonstrated as follows. If the losses are low, the solution of
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(37) can be approximated by:

0 = det [~(-~ + ja, -X,l + jR.l)]

(39)

Here the first term in the right hand side corresponds to the

lossless case, (38). It is assumed that@ remains unchanged in

the presence of losses, which is reasonable in the low-loss case.

This assumption agrees with the usual perturbational approach

in calculating the attenuation constant. As a result, the term

for the lossless case still satisfies (38), from which we obtain:

“=-Rs’’zsPrd:P)-l
(40)

If the relation between /? and Xsl is already known the

last expression can be used. Otherwise it is advantageous

to use the expression with the differentials of det. These

differentials correspond to the zero-loss case, which implies

that only real operations are involved in the calculation of a.

For compactness of notation we will use the last expression

of (40) hereafter. If necessary, ~~/dXsl can be calculated on

the basis of the determinant.

Relation (40) is also useful in determining the kinetic

inductance LK of structures with thin superconducting strips,

which is not only dependent on XS 1, but also on the current

density distribution, cf. equation (29). Only for a uniform

current density, LK is given by (33):

(41)

where s denotes the width of the strip. Generally LK will

be larger. To establish a relation between (40) and LK, Q is

written as:

;R,l
~d /

IJI’ dS
strips

Q=T=
2Pf 12 Z.

(42)

Here ~d is the time-averaged dissipated power in the strips,

~f is the time-averaged power transmitted through the struc-

ture, ZO is the characteristic impedance defined on the basis of

power ~f and current I through one of the strips. In principle

any of the strips can be used as the reference strip for the

definition of LS and 20. It is common practice to use the strip

which carries the signal for this purpose. In cases where it is

not possible to identify the signal strip uniquely (e.g., slotlines)

this can lead to a somewhat unconventional definition of 20.

However the analysis remains valid as long as the same strip

is used as the reference in LS and ZO. Compaing (42) with

the definition of LK, (29), and using (40) yields (Jn < J,):

LK ap
—=2s20—.
LS ax.1

(43)

In LK the contribution of all strips is included. The walls of

the box are assumed to be perfectly conducting.

As an illustrative example of the foregoing we consider

the case of the parallel-plate transmission line, which can be

treated analytically [21]. For simplicity it is assumed that one

of the plates is perfectly conducting. The separation between

the plates is denoted by d, the permittivity by E. Then, for

t << A,6,(18) of Swihart [21] reads as:

b’= ~(Wo)l/2/l + XsJwpod. (44)

Using Rsl = (wuo)2A4crn/t ((14), (16) and (24)), evaluation

of (40) yields:

(45)

which is in agreement with (37) of Swihart. Even in this

analytical example it is profitable that we arrive at the correct

expression for ~, without manipulating complex numbers.

Also, with the help of (43), we readily obtain: LK/Ls = 1,

as it should be for an uniform current distribution.

Concluding, the dependence of the complex propagation

constant of different wave-guiding structures on the surface

impedance of the strips can be evaluated by means of (38)

and (40), without the numerical use of complex numbers.

Equation (43) describes an efficient way of calculating the

kinetic inductance of the structure.

III. NUMERICAL RESULTS

The modified spectral domain method, as formulated in Sec-

tion II-B, is applied for a full wave analysis of the propagation

characteristics of coplanar waveguide (Fig. 2). Particularly

the dependence of the complex propagation constant and the

kinetic inductance on the surface impedance will be analyzed.

We also pay attention to the convergence of the numerical

solution.

The walls of the box are perfectly conducting, whereas

the thickness of the superconducting strips is much smaller

than the penetration depth and the skin depth: t < A, 6. The

components of the electric field in the slots are expanded in

terms of the basis functions of [14]. As usual, these basis

functions satisfy the edge condition for perfect conductors

of zero thickness. This leads to a logarithmic divergence for

quantities which involve integration of the current density

squared, i.e., the attenuation constant a, (42), and the kinetic

inductance LK, (29). Since both quantities play an impor-

tant role, and because it is easy to overlook a logarithmic

divergence, a critical investigation of the convergence of the

numerical solution is necessary.

The convergence is studied as a function of the number of

basis function terms Al and as a function of the number of

Fourier terms N. The required number Al is mainly dependent

on the extent to which the basis functions resemble the actual

field pattern. Evidently, fast variations of the basis functions,

such as the divergence near the edge, are better approximated
by increasing N.

As usual no problems are encountered in finding the wave
number ~, if the surface jmpedance is neglected. This case

corresponds to solving (38) with X,l = O. Fig. 3(a) shows

the solution of the wave number ~, normalized to the wave

number k. in free space, for different M and N. Values of
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Fig. 3. Tbe convergence of the numerical solution as a function of the

rmmber of Fourier terms N for different valnes of the number of basis function
terms M:M = 1(+), 2( D),3(v).4( x),5(()), and 6 (A). Shown are the
results of the normalized wave number /3/ko for Ls = O (a) und LS = 300
ntlrn (b).

J4 higher than 3 give practically the same results as Al = 2

and Ill = 3 for even and odd ill respectively. The solution

converges to a limiting value, which is constant for ill > 1.

Using A4 = 1 and N = 100 introduces only an error of O.1%.

It turns out that the actual functional dependence of the basis

functions is of little importance, as long as they incorporate the
edge condition and satisfy the correct symmetry of the field

pattern. These satisfactory results are in fact the justification

for this established choice of the basis functions.

For X,l # O the divergence near the edge is smeared out

as a result of the finite penetration depth. Hence, the basis

functions which satisfy the edge condition are less suited to

describe the field pattern. Therefore the convergence of ,8/ko

with increasing ill is slower (Fig. 3(b)), in comparison with

the case of X31 = O. However the solution does converge as a

function of both M an N. An increase in Nl is more effective

than the same increase in N. A reasonable approximation of

the solution is obtained using ill = 4 and N = 400 to 800.

.4

.3

.2

.1

o 0

A A

1 Io
100 1000 10000

N

The convergence of the numerical results for a with in-
creasing number of Fourier terms N for the different values of
Ls:Ls = 0(+),0 .03( D),0.3(v),3( x),30(()), and 300 nH/m (A). The

calculations are performed with four basis function terms (M = -t).

The attenuation constant is calculated according to equation

(40) for different values of L,s = X~l/ws (Fig. 4). For

L.s = O the results clearly exhibit a logarithmic divergence,

as has to be expected. Of course the logarithmic divergence

is a mathematical artefact. In reality the current density will

be peaked near the edges, but never divergent. In general a

practical argument is used to overcome this problem. It is

stated that the relatively slow divergence is not a serious

problem in view of the limited experimental accuracy in

measuring a. Indeed, reasonable values of a are obtained

[18], but the arbitrariness in the choice of N is questionable.

On the other hand it can be argued that the peaked current

densities make any kind of analysis very sensitive to small

deviations from the model, such as material imperfections and

geometrical tolerances.

The rate of convergence steadily increases for higher values

of Ls and A has an increasing effect in smearing out the di-

vergence near the edges. Because the current density becomes

less peaked with increasing Ls the value of a decreases as

well. For very small values of Ls the value of a is bounded

as N goes to infinity. However, it seems unrealistic that for

igstance as many as 105 Fourier terms are needed to obtain the

correct a. Presumably the validity of such a calculation breaks

down because of a small amount of losses. Thus theoretically

the calculation of a presents no problem for small L3, since

a is bounded. However practically problems are encountered

in much the same way as in the case of Ls = O. It is clear

from Fig. 4 that this ambiguity in the calculation of a ceases to

exist for higher values of Ls. As we will see, this corresponds

exactly to the case of experimental interest.

By virtue of (40), the slow convergence of a/R,l for small

Ls also causes /3 to be slowly convergent with N. This is

confirmed if we take a close look at the results for ~. However,

small values of L,s cause a small change in ~. Hence the slow

convergence of this small change is only observed at a scale

which is far beyond any practical demand of ~ccuracy. For

higher values of Ls (= X,l /ws) the quantity d~/6’X~l can
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.1!5
‘o .5 1

Alfim

Fig, 5. The kinetic inductance LK of a stripline (see inset) as

a function of the penetration depth A for different strip thicknesses
t(kf= 4,N = 800):t = 0.1(+ ),0.2 (U),0.3(V),0.4pm( x). The wafls

of the box are assumed to be perfectly conducting. The geometrical parameters

are: u = 846pm, b = 2000 pm, s = 150~m, and hl = hz = 432 ~m.

be integrated to obtain /3, which means that the resultant rate of

convergence of B for a specific value of Ls is an accumulation

of the rate of convergence of a for smaller values of Ls.

This explains why /3 is converging slower with the number of

Fourier terms N as L.s increases (Fig. 3).

In order to test the validity of the formulation of Section II-

B for calculating csand LK, we will compare our results with

two other works. Sheen et ai. [22] have analyzed a stripline

configuration with a metallization of arbitrary thickness. The

conductors, which obey the two-fluid model, are subdivided

in small patches. From the transmission line equation of the

resultant system of coupled transmission lines, the curre’nt

distribution, resistance and inductance of the transmission line

are calculated. We can use the Green’s function of a coplanar

waveguide for an analysis of the stripline configuration by

setting w = l/2(b – s) and s. = 1. As mentioned before,

the walls are assumed to be perfectly conducting. This is in

contrast to the model of [22], in which the top and bottom

wall are superconducting and the sidewalls are not present.

However, the main contribution to the kinetic inductance LK

will arise from the central strip, since the currents are most

strongly peaked here. The influence of the sidewalls can be

neglected, provided the distance b between these walls is not

too small. To limit the number of Fourier terms needed we

have performed the calculations with b = 2000pm. The results

for LK on the basis of (43) are presented in Fig. 5 as a function

of the penetration depth A for different thicknesses t(~ > t)

of the central strip. Despite the differences in geometry the

agreement with the results of Sheen et al. [22] (Fig. 6) is

good. This strongly indicates the validity of both methods, as

both are based on a different computational scheme.

Pond et al. [5] have calculated the complex propagation

constant v of microstrip lines with very thin superconductors

(t < A), by means of solving equation (37). No numerical

operations in the complex plane are necessary if we use

the alternative expression (40). The results for a, based on

.-
0 2 4 6 8 10 12 14

T/K

Fig. 6. The normalized attenuation constant of a microstrip line (see in-

set) with a strip of thickness t = 14.5 run at a frequency j = 1

GHz (Lf = 4, N = 800). The microstrip line is enclosed in a per-

fectly conducting box, The geometrical parameters are: E. = 10.5, and
a = b = 100pm, s = 25pm, hl = 2.25pm, and hz = 97.75pm.

The two-fluid model of Gorter and Casimir is used with T= = 12.15 K,
AO = 320 nm, and anc = 106 (f2m)-1.

(40), are shown in Fig. 6 and are seen to be in excellent

agreement with Fig. 9 of [5]. Again a different configuration

is handled within the framework of coplanar waveguide, this

time by setting w = l/2(b – s) and hl ~ O. In order to

make the results direct] y comparable, we have calculated the

absolute value of a by inserting the dependence of the two-

fluid model of Gorter and Casimir, o. = onC(L!’/Tc)4 and

J = Ao/(l – (T/TC)4)112, in R,l = (wyo)2)4am/t. The

conductivity just above the critical temperature is denoted by

mm., the zero-temperature penetration depth by A..

The foregoing demonstrates that the results of the formula-

tion described in Section II-B and those of other methods are

similar. For everyday use it is convenient to have the disposal

of an empirical relation between the surface impedance and

the propagation constrmt. For this purpose a description of

LK/Ls as a function of L,s is sufficient:

LK
— = F(L,s).
LS

(46)

Fig. 7 shows the numerical results of LK /Ls, calculated

according to (43), for different values of w. These data are

very well represented by the function:

F(LS) = A + Be-{OIAln (50L,s[nH/m])}c (47)

where A, B, and C are geometry-specific fitting parameters.

For quasi-TEM modes the parameters A, B, and C depend

only weakly on the dielectric constant (and therefore ha) and
frequency, because the dielectric constant has little effect on

the inductance and because the dispersion is relatively low for

these modes. The parameters also depend on the number of

Fourier terms N. However, in the cases of practical interest,

meaning an appreciable magnitude of LS, the value of I’(Ls)

is changing slowly with N.
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A transmission line model is applicable for structures, which

support a quasi-TEM mode (e,g.j microstrip lines and coplanar

waveguides). From such a model we obtain:

()
1/2

P=til *+1 , (48)

with the wave number /30 of the structure with perfect met-

allization (,Ls = O), and the geometrical inductance L =

(Po/ko)ZO/cO, which is only moderately dependent on Ls; co

is the phase velocity in free space. Closed-form expressions

are available for the wave number (30 and the characteristic

impedance 20 [23], [24]. From (48) it also is clear that the

influence of LK is only significant if it is an appreciable

portion of L.

The equations (46) to (48) establish a relation between @

and L,s or, equivalently, X~l. Then, invoking (40), a/R,l is

also known for a particular X~l.

IV. EXPERIMENTAL RESULTS

We have measured the resonance frequency f. and the

unloaded quality factor Q. of YBa2CU307_Z coplanar wave-

guide resonators, as described in [25]. The measurements

are performed in the temperature range of 4.2 to 80 K

at excitation levels for which the data are independent of

incident microwave power ( —30 dBm). The thin films are

deposited on sapphire substrates by off-axis rf magnetron

sputtering [26]. A c-axis oriented YBa2 CU3 07–Z layer is

separated from the substrate by a PrBa2 Cu307_Z buffer layer,

both layers having a thickness of 50 nm. The buffer layer

blocks the interdiffusion between YBa2Cu307-a and sapphire

effectively [27]. Moreover, the PrBa2 CU3 07–Z material has

similar lattice constants and the same perovskite structure as

YBazCu307_z, resulting in art improved lattice-match.

The normalized wave number ,B/ko = co/21~o follows from

the resonance frequency ~., the length Z of the resonator, and

the phase velocity co in free space. The relevant length of

the resonator is slightly different from its physical length (5.4

mm) by open-end effects. The wave number ,8 is influenced

by the field penetration into the superconductor or by the

kinetic inductance of the transmission line. From the numerical

analysis of Section III we have an empirical relation between

,6 and Ls = ~oA2/st, which can be inverted to obtain A from

~. We are dealing with small values of Ls/L of the order

of a few percent; the geometrical inductance is evaluated as

L = (,80/ko)Zo/co = 377 nH/m (s = 0.5 mm, w = 0.2 mm),

using the closed-form expressions of [24], and Ls is estimated

as L,s = poA2/st x 2 nH\m for A R 200 nm, .s = 0.,5 mm,

and t = 50 nm. If Ls is only a small fraction of L, relatively

small changes in ~ correspond to significant changes in L,s, cf.

(48). This illustrates the difficulty that for small Ls/L both the

wave number for Ls = O,~., and the length 1 of the resonator

need to be known with high accuracy. The former quantity

(flo) is not kUOWtI experimentally (Ls # O for T A O), while

it is non-trivial to calculate the latter (i) accurately, since this

involves open-end effects. Moreover, there are more sources of

uncertainty, such as the dielectric anisotropy of sapphire [28].

1’ 1 1 I 4

-.1 1 10 100 1000
Ls(nH/m)

Fig.7. The normalized kinetic inductance LK /Ls as a function of L.s

for coplanar waveguides (Fig. 2). The data points are the spectral domain
results for w = O.l(+), w = 0.2(0), and w = 0.5 mm (x). The lines

are the result of a fit to (47) with parameters: A = 1.164, B = 2.096,

and C’ = 3.666(w = 0.1 mm); A = 1.188,1f = 1.497, and

C = 3.661(w = 0.2 mm); A = 1.173, B = 1.042, and
C = 3.362(w = 0.5 rmn).

Therefore a more practical procedure is applied to determine

@o and 1. The results for ~ are fitted to the temperature

dependence of the two-fluid model of Gorter and Casimir, A =

Ao/(l – (T/TC)4)1/2, with the free parameters 1, }., and T..

Such a self-consistent treatment of the data is commonly used,

even in cases of a small geometry (delay lines), where much

higher values of L,s/L are possible [29]. The procedure turns

out to be satisfactory, since slightly different values of PO lead

to somewhat different values of 1, but to practically the same

A.. The values of A, B, and C from the empirical relation (47)

are not very critical as well. We use @o/ko = 2.3367, which

is the spectral domain result for s = 0.5 mm, w = 0.2 mm,

h2 = 1.135 mm, S, = 10, and ~ = 10 GHz. The value of hz

follows from the thickness of the sapphire substrate (0.5 mm),

which is surface mounted on an alumina motherboard (25 roil).

The parameters A, B, and C are only weakly dependent on h2,

as mentioned before, which implies that we can use the values

shown in Fig. 7 (hz = 0.635 mm): A = 1.188, B = 1.497,

and C = 3.661. Within the same approximation we can ignore

the difference between the frequency used in the calculations

(10 GHz) and the observed resonance frequency (=11 GHz).

In this way we obtain 1 = 5.695 mm, Jo = 250 nm, and
TC = 86 K. The critical temperature T= is consistent with

de-resistance measurements.

The temperature dependence of the inferred ~ is examined in

more detail by plotting the relative change (A(T) – ~(0))/)(0)

versus temperature (Fig. 8). Also shown are the temperature

dependencies of the two-fluid model (solid) and the Mattis-

Bardeen (MB) theory [9], for two different values of the energy

gap parameter: 2Ao/kTc = 3.5 (dashed) and 2Ao/kTC = 4.8

(dot-dashed). The MB temperature dependence of A changes

slowly with the electron mean free path 1, The curves shown in

Fig. 8 correspond to Z/n-&. = 2. The MB theory is used in the

local limit [30], where the field variation across the size of the

Cooper pairs can be neglected, because the zero-temperature
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Experimental results of the relative change of the penetration depth,

(X(l’) – A~O))/A(0), with temperature T(CI).- The cties represent ‘the

two-fluid model (solid), and the MB theory with l/T&o = 2, AO = 140
m, and the gap parameters 2Ao / lc’Tc = 3.5 (dashed) and 2Ao /kTc = 4.8

(dot-dashed).

coherence length COis much smaller than the penetration depth

~. at zero temperature. This limit is appropriate for high-

temperature superconductors, since to is of the order of a

few nm in these materials, while A. is of the order of several

hundred nm. Less clear is the validity of isotropic pairing, as is

assumed in the MB theory. However, a detailed picture of the

coupling in high-temperature superconductors is not available.

The experimental results agree with a gap parameter

2A0/kTc = 3.5 for lower temperatures (7’ s 0.5’TC), while

the data for T > 0.5TC are better represented by 2Ao/kTc =

4.8. The value of 3.5 agrees with the BCS weak-coupling

limit [31], the value of 4.8 is comparable to results of other

works, where values of 4.3 to 5 are reported for the same

temperature range [6], [32], [33]. The two-fluid model closely

resembles the MB theory for 2A0 /kTC = 4.8, despite the

usual application of this model to superconductors in the weak-

coupling limit (2 A0/kTc = 3.53). This is caused by the fact

that the zero-temperature penetration depth A. in the two-fluid

model should be somewhat higher than ~0 in the BCS weak-

coupling limit in order to obtain agreement for temperatures

near TC.

Thus the results over the entire temperature range are not

consistent with a single-gap BCS temperature dependence,

which confirms the results of [6]. Possibly this can be at-

tributed to the presence of weak links in the material [34], [35],

which also explains the reduced critical temperature T. = 86

K and the increased penetration depth AO = 250 nm, compared

to the more or less established intrinsic value AIO = 140 nm

[6], [33]. The influence of weak links is accounted for in a

model of Hylton et al. [36], which predicts that the resultant

penetration depth ~ = (~~ + A?) Iiz is modified by an effective

– 1’2 of the weak lines alone. If wepenetration depth ~J IX I.

take the weak-link critical current temperature dependence of

Ambegaokar-Baratoff [37], lC R (A/Ao) tanh (A/2kT), the

temperature dependence of AJ is the same as the dominant

low-temperature MB temperature dependence of AI. Therefore

1000

100

10
,W

o 20 40 60 80
TIK

Fig.9. Expenmentat results of the surface resistance R., absolute (0) and

relative to zero-temperature (A). The curves represent the two-fluid model

(solid), and the MB theory with l/m&o = 2, Ao = 140 um, and the gap
parameters 2A0 /kTC = 3.5 (dashed) and 2A0 /kTc = 4.8 (dot-dashed).

this temperature dependence does not improve the fit of the

experimental results to a single-gap dependence. However, the

precise change of lC with temperature is open to discussion.

Next we turn to the results of Rs, which are deduced from

the data Qo. By virtue of QO = ,13/2a and (40) we have;

R. = ,13/4 JQoafl/8Xsl, where Rs is the surface resistance

of bulk material, cf. (24). With the application of the empirical

relations (46) to (48) between .6 and LS (or A), R, can be

calculated from Q., if J is known. In this case we will use

the two-fluid model of Gorter and Casimir to determine A,

which is reasonable over the entire temperature range (Fig. 8).

Fig. 9 shows the results for R, as a function of temperature

(Cl). As usual, Rs decreases rapidly as the temperature is

reduced below TC. For lower temperatures RS approaches

a constant value, which is an indication of non-intrinsic

behavior. The most likely reasons of this residual R, are the

losses in the weak links [34], [35] or the dielectric losses

[38]. In any event, the low-temperature value R. = 80@

is much lower than the textbook value of OFHC copper in

the same frequency and temperature range, Rs = 5 mfl.

This illustrates the suitability of these films for microwave

applications with a high demand on R,, such as delay lines and

high-performance filters. Both the residual R, and TC are in

remarkable agreement with the results of thin films on sapphire

with a SrTiOs buffer layer, reported by Char et al. [39]

(R, = 65@ at 10 GHz, which would imply R. = 80 pfl

at 11 GHz according to a quadratic frequency dependence,

and a superconducting transition at 87 K with a 1 K transition

width). Also shown in Fig. 9 are the results for Rs with the

zero-temperature value subtracted, Rs (T) – Rs (0), (A). The

aim of this operation is to cancel the non-intrinsic losses,

although the temperature dependence of these losses is not

necessarily negligible. The data of Rs (T) – RS (0) at the lowest

temperatures should be interpreted with some caution, since

the relative errors become large for small differences.

The solid curve represents the two-fluid model with the

parameters AO = 250 nm and onC = 3.106 (flm)-l, where
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onC is the conductivity just above Tc. The other two curves are

the results of the MB theory for Z/n-&. = 2, A. = 140 nm, and

gap :alues 2Ao/lcTC = 3.5 (dashed) and 2Ao/kTc = 4.8 (dot-

dashed). The calculations are performed at 11 GHz; the 2%

change of the observed resonance frequency with temperature

is neglected. In order to match the two-fluid model and the

MB theory near T,-, we need a higher value of on. at 11 GHz

than Drabeck et al. [32] at 100 GHz (1.5 ~ 10-6 (flm)-l).

This is caused by the additional MB frequency dependence

In (kT/hw) of the surface resistance (Fw < kT), which

illustrates that we should not take the value of a~~ too serious.

The experimental results close to T. are well represented

by 2Ao/kTc = 4.8. In this temperature range the value

of l/r~o = 2 is found to give the best agreement with

the experimental results. The data at lower temperatures are

better described by the other gap parameter 2A0/lcTc = 3.5,

although it can not be concluded decisively that this is the

correct value of the gap for lower temperatures. However the

discrepancy with the experimental results is limited in view

of the margins of error and the neglect of the influence of

temperature with respect to the weak links.

V. CONCLUSIONS

We have analyzed the surface impedance of an infinite

normal or superconducting film of arbitrary thickness. The

surface reactance X. of very thin superconducting films (t s

~) is increased by a factor A/t compared to X. of relatively

thick films (t >> A). The surface resistance R, and the kinetic

inductance LK are increased by a factor 2A/t, The analysis

also shows that in the case of very thin films the boundary

conditions for the field agree with the complex boundary

conditions [5], which are used in a modification of the spectral

domain analysis of different wave-guiding structures.

The influence of the surface impedance Z. on the prop-

agation constant y = cs + j~ is investigated by means of

the modified spectral domain method. We found expressions

which allow an efficient calculation of the attenuation constant

a and the kinetic inductance LK. An empirical model of the

relation between the wave number ~ and Lk is presented,

which describes the exact results very well.

This model is used to determine the penetration depth

~ and the surface resistance R, from the experimental re-

sults for the resonance frequency and the unloaded qual-

ity factor of YBa2 Cu307_Z coplanar waveguide resonators.
The YBa2 Cu307_Z layers are deposited on sapphire with

a PrBa2 CU307–Z buffer layer. The observation of a low

residual surface resistance, R, = 80@, supports the con-

clusion from other work [27], that the buffer layer prevents

interdiffusion, while constituting a suitable basis for epitaxial

growth of YBa2Cu307–Z.

The results indicate that the temperature dependence of A

and R~ is not characterized by a single-gap BCS tempera-

ture dependence. For lower temperatures a conventional BCS

weak-coupling gap vahte 2A0 /lcTC = 3.52 seems appropriate,

while 2Ao/kTC = 4.8 describes our findings for higher

temperatures. Our results suggest an electron free mean path

vah,te l/m&. = 2. The origins of non-BCS behavior have

been interpreted in terms of weak links. However, other

interpretations [40] can not be ruled out, since the coupling-

mechanism for electrons in high-temperature superconductors

is not clearly understood.
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