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The Propagation Characteristics of
Wave-Guiding Structures with Very Thin
Superconductors; Application to Coplanar

Waveguide YBA2Cu3O7_, Resonators

Boele B. G. Klopman, Gerrit J. Gerritsma, and Horst Rogalla

Abstract— We have analyzed the propagation characteristics
of wave-guiding structures with superconductors which are thin
compared to the magnetic penetration depth. The complex prop-
agation constant is evaluated within the framework of the mod-
ified spectral domain method without the need for numerical
calculations in the complex plane. Good agreement is found
with the results of other methods. The numerical analysis is
instrumental in deducing results for the penetration depth and the
surface resistance of YBazCu3zO7_, thin films on sapphire with
a PrBayCu3zO7—, buffer layer. We confirm recent observations
of a non-single-gap BCS temperature dependence.

I. INTRODUCTION

HE SURFACE impedance of superconductors is charac-

terized by a low resistance and a relatively high reactance.
This makes superconductors suitable for microwave applica-
tions, which are impossible if normal conductors are used.
As a result of the low surface resistance, the power losses
in superconductors are low, which offers the possibility of
low-loss filters with a sharp frequency response [1], [2]. The
surface reactance represents the stored energy in the supercon-
ductor. If the stored energy is increased at a constant level of
transmitted microwave power, the phase velocity is reduced,
since the energy flux remains the same. Therefore, the surface
reactance has the effect of slowing down the electromagnetic
wave. Transmission lines exhibit a high slowing factor if the
geometry favors the stored energy relative to the transmitted
energy. The stored kinetic energy of the charge carriers in
a superconducting film increases as the thickness of the film
is reduced below the magnetic penetration depth. This is a
consequence of the increased current density necessary to
support the same current or magnetic field. The transmitted
energy on the other hand is reduced by choosing a small
geometry. In this way very compact microwave devices, such
as filters and delay lines, can be fabricated [3], [4]. The
miniaturization is also made possible by the low surface
resistance. In addition, the influence of the surface reactance
also can be used to determine the penetration depth.
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Both the design of microwave devices and the characteriza-
tion of the superconductors rely on the accurate calculation of
the propagation characteristics of superconducting transmis-
sion lines. Superconducting microstrip lines with very slow
phase velocities have been analyzed by a spectral domain
method, modified by complex resistive boundary conditions
[S]1. The modification is necessary because of the coupling
of the electromagnetic field from one side of the film to
the other side. We will show that the complex propagation
constant (attenuation and wave number) of different wave-
guiding structures can be evaluated within the framework
of the modified spectral domain method without numerical
calculations in the complex plane. Expressed in transmission
line components, this corresponds to the calculation of the re-
sistance and kinetic inductance of the structure. The numerical
analysis is applied to coplanar waveguide transmission lines.

The suitability of the method is demonstrated by the inves-
tigation of experimental YBasCusO7_, coplanar waveguide
resonators. It is not possible to obtain a high slowing factor
using a coplanar waveguide with reasonable dimensions. The
uniplanar metallization makes the transmitted energy much
less sensitive to the separation of the strips than in the case of
microstrip lines. However the effect of the surface reactance on
the resonance frequency of the resonator is significant enough
to determine the penetration depth. Results for the surface
resistance are obtained from the observed quality factor of
the resonator. Investigations of the surface impedance (surface
resistance and penetration depth) are of importance, since
these can help to clarify the nature of the high-temperature
superconductors. The lack of a detailed picture of the coupling-
mechanism of the electrons in these superconductors is accom-
panied by observations of non-BCS behavior [6], [7].

We start with an analysis of the surface impedance of a su-
perconducting or normal film of arbitrary thickness. This also
naturally leads to the complex resistive boundary conditions
in the case of very thin films.

II. THEORY

A. Surface Impedance of a Film of Arbitrary Thickness

To investigate the surface impedance of a superconducting
film, we first demonstrate how the Maxwell equations have
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to be modified, assuming the two-fluid model and the London
equations give a valid description of the superconductor. De-
spite the phenomenological nature, much of the characteristic
features of the electrodynamics is easily visualized by this
approach, at least qualitively.

The electrons in a superconductor can be divided in normal
and superconducting electrons, according to the two-fluid
model. Therefore the total current density J = J,, + Js
consists of a dissipative normal part J,, and a superconducting
dissipationless part J,. The normal part J,, corresponds to the
conductivity of the normal electrons:

J, =o0,E, ey
giving rise to power losses. The superconducting electrons
are described by the London equation [8]:

8J, E
ot - ,u/oAz’

@

which represents the free acceleration of the electrons in an
electric field. The magnetic penetration depth is denoted by .

For time-harmonic electric fields, (1) and (2) can be incor-
porated in the first Maxwell equation V X H = yE| provided
y is written as:

Yy =0+ jwe. 3)
Here the complex conductivity is defined as:
0 =0y — j0s, @)

with:
1
0g = ——.
S w2

®)

In (3) the last term represents the displacement current. The
case of a normal conductor is obtained by setting os = 0.

The second Maxwell equation V X F = —zH remains
unchanged:

2 = jwhio. ©)

So the two-fluid model and the London equations lead to
the introduction of a complex conductivity. Although this
complex conductivity is a result of the phenomenological
London equations, a comparison can be made with more
theoretically based results for the complex conductivity [9].
This yields values for o,, and A on the basis of the BCS theory.
It is also possible to use the phenomenological Gorter-Casimir
expressions [10] for o, and A.

The interpretation of the complex conductivity is made clear
by manipulating the two Maxwell equations to obtain for the
supplied time-averaged complex power density p,:

1
5, =—=V-(Ex H")
2
1 1. 1.
= §an]E|2 + §]w,u0()\2le|2 + |H|2) — ijelE’lz
=Pg + 2jw(Wg + Wy — WE). (N

So the normal (real) part of the conductivity corresponds
to a dissipated power density 7,;, while the superconducting

(imaginary) part is related to the kinetic energy density wx
of the superconducting electrons. In (7) wys and Wk are the
stored magnetic and electric energy densities (all quantities
time-averaged).

Expression (7) will be used to evaluate the kinetic and mag-
netic inductance of an infinite film of arbitrary thickness ¢. First
we develop expressions related to the complex power. In the
following the displacement current will be neglected, which
is a good approximation for most conductors at microwave
frequencies.

We consider plane waves, propagating in the z-direction,
perpendicular to the film. The film boundaries. are located at
z = 0 and z = t. The magnetic and electric field in the
interior of the film are given by [11]:

Hy(z) = Hore 7" + Hope™?, ®)
E,(2) =n(Ho1e 7% — Hgpe?*?).
0<z<t )

The wave number & and the intrinsic impedance 7 follow from
the Maxwell equations:

k =~z (10)
n=v/z/y. (1D
In the case of a normal conductor this yields:
k=+v/wpoon/2(1 - j)
=1 =5/, 12)
n=/wpo[20,(1+ j)
= Sonod(1+ ), (13)
where § is the classical skin depth:
8 = \/2/wpoon. (14)

For a superconductor k& and 75 are given by (assuming
0n K 0s):

k= \/wioos(on/20s — j)

= (V8 =)/, (15)
n= WMO/JS(Un/20's +j)
=woA(A/6)” + 7). (16)
We will see that R, = Re(n) is related to power losses,
while X, = Im(n) is a measure of the stored energy. So

in superconductors the power losses are usually much smaller
than the stored energy (A < § for 0, < 0,). In addition, in
this case the power losses are much smaller than in a normal
conductor.

Invoking tangential continuity of H at the boundaries,
Hy(O) = Hl,Hy(t) = Hz, yields:

H,(z) =[Hysin (k(t — 2)) + Hasin (k2)]/sin (kt),  (17)

Eo(2) =n[Hy cos (k(t — 2)) — Ha cos (kz)]/j sin (kt). (18)
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The complex power supplied to the film per unit area is
evaluated as:

p= %Ex(o) x H(0) - %Em(t) x H(1)

1 1
=3 s1|H1 — Ha* + -2-Z52(|H1|2 + |Ha?), (19)

where the effective surface impedances Zs; and Zs» are
defined:

n

Zsl = m, (20)
_ cos(kt)—1
Zs2 = G () 21)

Two limiting cases are of particular interest. Firstly, for a
very thin film (|kt| € 1, ie., t < A, §) we have:

1
Zs1 = ]% =
Zsg = %jw/jot, (t € A, 6) (22)
while in the case of a relatively thick film:
Zg1=0,Zs2 =1 (t>A6) (23)

Thus the second term in (19) is dominant if ¢ > A,
which actually is the bulk material case. Indeed we find
the well-known expression for the complex power [11], with
the addition that the magnetic field at both film boundaries
contributes. In this case the surface impedance equals the
intrinsic wave impedance. For ¢ <« A, only the first tetin
in (19) survives. In this case the impedance depends inversely
proportional on the thickness of the film. To be specific:

R, = RSQA/ta (t < Au 6)
Xo = X A/t

24
25)

Here R, and X, denote the surface resistance and reactance
for bulk material: n = R; + 7X,. So for very thin films, the
effective surface resistance is by a factor 2A/t higher than
the bulk value, the surface reactance by a factor A/¢. This
correction should be kept in mind when data for very thin
films are to be interpreted.

In the intermediate range of thicknesses, the complex power
depends on the exact values of H; and H,. In general no
overall impedance can be defined uniquely. An exception
occurs if the field is confined to one side of the film (H1
or Hy = 0), meaning that the film represents a real wall. Then
the surface impedance reads as:

Zs = —j’I]COt (kt), (Hl OI'H2 = 0) (26)

which is in agreement with the usual expression for this case
[12].

The general pattern of Z;; and Z,» is shown in Fig. 1 at a
frequency f = 10 GHz, with a pepetration depth A = 100 nm
and skin depth 6 = 100 \. Clearly, Z,; reaches its limiting
value (see (24), (25)) not far below t/A = 1. For Zs to

100
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Fig. 1. The effective surface impedances Z;1 = Rs1 + jXs1 (dominant
ift € A) and Zso = Rs2 + j X2 (dominant if ¢ 3> A) as a function of
t/ . The resistive and reactive parts are normalized to the quantities of bulk
material (¢t 3> X).

100

reach its limiting value (23) for ¢ > XA a somewhat stronger
condition on t/A is required; depending on the acceptable
errors, the value of ¢/ can be as high as approximately 5.
The difference in the asymptotic behavior of Z,; and Z,5 can
be understood, recalling that the current density at both sides
of the fllm falls off as exp (—d/A) inside the conductor, where
d is the distance from the boundary of the film. As soon as ¢
becomes comparable to A or smaller, the current density inside
the film is almost uniform. However, if the current density is
to die out in the interior of the conductor, the distance to both
sides of the film should be several penetration depths.

We now turn to the calculation of the kinetic inductance
Lk and the magnetic inductance Lps for an infinite film. Per
unit length those inductances are related to the time-averaged
kinetic and magnetic energy density through (cf. equation (7)):

1 — — 1
HEac+ 1P =W+ Was = o [ [ dyz
27

Here 1 is the amplitude of the total current through the film:

I://Jsdydz:(Hl—Hg)w,

where w is the width of the film. From (27) we obtain for
Ly and Lyy:

Lk =,u,0)\2//|J5|2dydz/Iz,
L =po [ [ 1P dyds/ 1.

Again two limiting cases are considered. The inductances
Ly and Ly, are equal for ¢ > ), 6, because (neglecting o,):
HE_\HFBE
2 E| |7l T =4

Evaluating the integrals yields in this transversely uniform
case:

(28)

29

(30)

€2y

_ oA

L =1Lu 2w

(t>t,6) (32)
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The property of equal Lx and Ljs is generally valid for bulk
superconductors [13]. For a very thin film on the other hand,
we obtain for Lg:

HoA?
= Ab
LK wit 3 (t < ’ )

(33)

while Ljys approaches zero. Thus in this range of thicknesses
Ly is a factor 2A/t higher than in the case of relatively thick
films. The increased value of Ly results in a higher slow-
ing factor of the electromagnetic waves. The accompanying
increase in the losses is usually not a problem, since R, is
very low for superconductors, cf. (24). Structures with a high
slowing factor contribute to the realization of very compact
microwave circuits [3], [4]. In addition, by measuring the slow-
wave behavior it is possible to determine A, because of the
role it plays in Lg.

B. Propagation Characteristics of Wave-Guiding
Structures with Non-Perfect Conductors

In commonly used wave-guiding structures, we are not
dealing with plane waves, as was supposed in the previous
section. In general the modes are at best quasi-TEM, but
generally hybrid of nature. We will analyze the influence
of a non-perfect conducting (i.e., normal or superconducting)
metallization with the restriction to the case of very thin films,
where the thickness ¢ of the metallization is much smaller than
the penetration depth A and the skin depth 6:¢ < ), §. In this
limit it can be shown on the basis of (17) and (18) that the
boundary conditions for plane waves can be expressed as:

nx (Hy - Hy) =3, (35)
with:
1
R=—=17,. (36)
ot

The subscripts 1 and 2 refer to both sides of the film. The
quantity j dehotes the total current density per unit length
through the cross-section of the film, n is a unit normal vector
to the film.

It is assumed that the complex resistive boundary conditions
(34) and (35) locally remain valid for non-plane waves. This
is an approximation, especially at the sharp corners of the
metallization. However, the method has been proved to be
quite accurate [S].

The spectral domain method can be applied for a full wave
analysis of different wave-guiding structures, such as coplanar
waveguide transmission lines (Fig. 2) [14]. The fact that the
metallization strips are non-perfect very thin conductors is
taken into account by a modification of this method through
the complex resistive boundary conditions (34) and (35), as
pointed out by Pond ez al. [S]. Subsequent application of the
modified spectral domain method can be found in several
works [15], [16].

In short, the electric field at the strips interface (z = hy+hs)
is expressed in terms of the current density in the strips by
means of the so-called dyadic Green’s function. The Green’s
function corresponds to the case of perfect conductors of zero

A A
h3a
W S W
«<>e—">
a 7 % X ha
& t )
h1
\ 4 'y
b

Fig. 2. Geometry of a coplanar waveguide enclosed in a box with strips
of thickness t. Unless otherwise stated, the spectral domain calculations are
performed at a frequency f = 10 GHz with geometrical parameters €, = 10,
and ¢ = 18,b = 10,s = 0.5,w = 0.2,h; = 9,hes = 0.635, and
hs = 8.365 mm.

thickness. In this limit the edge condition [17] implies that the
tangential field and current components behave like p~1/2 for
vanishing radial distance p from the edge. Invoking boundary
condition (34) establishes a relation between the electric field
in the slots and the currents in the strips. The electric field
in the slots is expanded into a set of basis functions. If
these basis functions are chosen to satisfy the edge condition,
normally only a few basis functions are needed for an accurate
description of the field pattern. The drawback of this approach
is the appearance of a logarithmic divergence for quantities
which involve the integration of the squared field or current
components [18], [19]. In the presentation of the numerical
results we will discuss this problem in more detail.

The electric field in the slots and the currents in the
strips are non-zero in complementary regions. This means that
Galerkin’s method can be applied to obtain a homogeneous
system of linear equations with the weighting factors in the
series of basis functions as unknown coefficients [20]. The
propagation constant 7y of the structure corresponds with
non-trivial solutions of this system of equations, meaning a
determinant of zero:

det [Z(j7, jZe1)] = 0. @7)
Here, Z denotes the matrix corresponding to the system of
equations.

In general the propagation constant is a complex number
with attenuation constant « and wave number 3:v = a + j3.
This would imply the use of a root finding algorithm in the
complex plane. However, in the lossless case (R;; = 0 and
o« = 0) the determinant is real, as is emphasized by the
arguments jv and jZ1. Then (37) becomes:

det [Z(—f8,—X,1)] = 0. (38)
In the case of a small amount of conductor losses in the
strips, it is also possible to calculate the attenuation constant
o without explicit complex numerical computation. This is
demonstrated as follows. If the losses are low, the solution of
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(37) can be approximated by:

0=det[Z(-B+ ja,- X, + JR_S_l)]
= det (-8, X)) + 22Tl o
O det [7(_63 _Xml)] .
oKX T

Here the first term in the right hand side cotresponds to the

lossless case, (38). It is assumed that 3 remains unchanged in

the presence of losses, which is reasonable in the low-loss case.

This assumption agrees with the usual perturbational approach

in calculating the attenuation constant. As a result, the term

for the lossless case still satisfies (38), from which we obtain:
=\ ~1

(39)

__ p Odet[Z] (ddet[Z]
) & ( E% )
_p. 98
= o (40)

If the relation between (3 and X,; is already known the
last expression can be used. Otherwise it is advantageous
to use the expression with the differentials of det. These
differentials correspond to the zero-loss case, which implies
that only real operations are involved in the calculation of «.
For compactness of notation we will use the last expression
of (40) hereafter. If necessary, d3/9X ;1 can be calculated on
the basis of the determinant.

Relation (40) is also useful in determining the kinetic
inductance Lg of structures with thin superconducting strips,
which is not only dependent on X1, but also on the current
density distribution, cf. equation (29). Only for a uniform
current density, L is given by (33):

Ls= N0A2 - év£7

st ws
where s denotes the width of the strip. Generally Lx will
be larger. To establish a relation between (40) and Ly, o is

(41)

written as:
> SR / T2 ds
d strips
= = = . 42
“ 2Pf IZZO ( )

Here P, is the time-averaged dissipated power in the strips,
P, is the time-averaged power transmitted through the struc-

ture, Zo is the characteristic impedance defined on the basis of .

power P # and current I through one of the strips. In principle
any of the strips can be used as the reference strip for the
definition of Ls and Zy. It is common practice to use the strip
which carries the signal for this purpose. In cases where it is
not possible to identify the signal strip uniquely (e.g., slotlines)
this can lead to a somewhat unconventional definition of Zj.
However the analysis remains valid as long as the same strip
is used as the reference in Lg and Z,. Comparing (42) with
the definition of Ly, (29), and using (40) yields (J,, < J,):

Lk a8

L_S = 2SZ(] 3 X51 .
In Lx the contribution of all strips is included. The walls of
the box are assumed to be perfectly conducting.

43)

As an illustrative example of the foregoing we consider
the case of the parallel-plate transmission line, which can be
treated analytically [21]. For simplicity it is assumed that one
of the plates is perfectly conducting. The separation between
the plates is denoted by d, the permittivity by e. Then, for
t < A, 6, (18) of Swihart [21] reads as:

B = wleno)?y/1+ Xo Jwiiod. (44)

Using Re1 = (wpo)? Mo, /t ((14), (16) and (24)), evaluation
of (40) yields:

o= & (epoyt/ Lo [t
2d V1+22/dt’

which is in agreement with (37) of Swihart. Even in this
analytical example it is profitable that we arrive at the correct
expression for «, without manipulating complex numbers.
Also, with the help of (43), we readily obtain: Lyg/Lg = 1,
as it should be for an uniform current distribution.

Concluding, the dependence of the complex propagation
constant of different wave-guiding structures on the surface
impedance of the strips can be evaluated by means of (38)
and (40), without the numerical use of complex numbers.
Equation (43) describes an efficient way of calculating the
kinetic inductance of the structure.

(45)

III. NUMERICAL RESULTS

The modified spectral domain method, as formulated in Sec-
tion II-B, is applied for a full wave analysis of the propagation
characteristics of coplanar waveguide (Fig. 2). Particularly
the dependence of the complex propagation constant and the
kinetic inductance on the surface impedance will be analyzed.
We also pay attention to the convergence of the numerical
solution.

The walls of the box are perfectly conducting, whereas
the thickness of the superconducting strips is much smaller
than the penetration depth and the skin depth: ¢ < A, 6. The
components of the electric field in the siots are expanded in
terms of the basis functions of [14]. As usual, these basis
functions satisfy the edge condition for perfect conductors
of zero thickness. This leads to a logarithmic divergence for
quantities which involve integration of the current density
squared, i.e., the attenuation constant «, (42), and the kinetic
inductance Ly, (29). Since both quantities play an impor-
tant role, and because it is easy to overlook a logarithmic
divergence, a critical investigation of the convergence of the
numerical solution is necessary.

The convergence is studied as a function of the number of
basis function terms M and as a function of the number of
Fourier terms N. The required number M is mainly dependent
on the extent to which the basis functions resembie the actual
field pattern. Evidently, fast variations of the basis functions,
such as the divergence near the edge, are better approximated
by increasing N.

As usual no problems are encountered in finding the wave
number 3, if the surface jmpedance is neglected. This case
corresponds to solving (38) with X, = 0. Fig. 3(a) shows
the solution of the wave number (3, normalized to the wave
number kg in free space, for different M and N. Values of
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Fig. 3. The convergence of the numerical solution as a function of the
number of Fourier terms NV for different values of the number of basis function
terms M: M = 1(+),2(0),3(v).4(x),5(0), and 6 (A). Shown are the
results of the normalized wave number 3/kg for Lg = 0 (a) and Lg = 300
nH/m (b).

M higher than 3 give practically the same results as M = 2
and M = 3 for even and odd M respectively. The solution
converges to a limiting value, which is constant for M > 1.
Using M = 1 and N = 100 introduces only an error of 0.1%.
It turns out that the actual functional dependence of the basis
functions is of little importance. as long as they incorporate the
edge condition and satisfy the correct symmetry of the field
pattern. These satisfactory results are in fact the justification
for this established choice of the basis functions.

For X1 3# 0 the divergence near the edge is smeared out
as a result of the finite penetration depth. Hence, the basis
functions which satisfy the edge condition are less suited to
describe the field pattern. Therefore the convergence of §/kqg
with increasing M is slower (Fig. 3(b})), in comparison with
the case of X,; = 0. However the solution does converge as a
function of both M an N. An increase in M is more effective
than the same increase in V. A reasonable approximation of
the solution is obtained using M = 4 and N = 400 to 800.

4

ot/(koRg1/Q)
N

ﬁ)
(-]
(-3
L]
<
<

.1 i A A A A A P—

o i [N R | 1 P N A |

100 1000 10000
N

Fig. 4. The convergence of the numerical results for o with in-
creasing number of Fourier terms N for the different values of
Lg:Ls = 0(+),0.03(0),0.3(v7), 3(x),30(¢). and 300 nH/m (A). The
calculations are performed with four basis function terms (M = 4).

The attenuation constant is calculated according to equation
(40) for different values of Ly = X, /ws (Fig. 4). For
Lgs = 0 the results clearly exhibit a logarithmic divergence,
as has to be expected. Of course the logarithmic divergence
is a mathematical artefact. In reality the current density will
be peaked near the edges, but never divergent. In general a
practical argument is used to overcome this problem. It is
stated that the relatively slow divergence is not a serious
problem in view of the limited experimental accuracy in
measuring «. Indeed, reasonable values of o are obtained
(18], but the arbitrariness in the choice of N is questionable.
On the other hand it can be argued that the peaked current
densities make any kind of analysis very sensitive to small
deviations from the model, such as material imperfections and
geometrical tolerances.

The rate of convergence steadily increases for higher values
of Lg and A has an increasing effect in smearing out the di-
vergence near the edges. Because the current density becomes
less peaked with increasing Ls the value of o decreases as
well. For very small values of Lg the value of « is bounded
as N goes to infinity. However, it seems unrealistic that for
instance as many as 10° Fourier terms are needed to obtain the
correct . Presumably the validity of such a calculation breaks
down because of a small amount of losses. Thus theoretically
the calculation of o presents no problem for small Ls, since
a is bounded. However practically problems are encountered
in much the same way as in the case of Lg = 0. It is clear
from Fig. 4 that this ambiguity in the calculation of « ceases to
exist for higher values of Lg. As we will see, this corresponds
exactly to the case of experimental interest.

By virtue of (40), the slow convergence of a/R,; for small
Lg also causes § to be slowly convergent with N. This is
confirmed if we take a close look at the results for 3. However,
small values of Ls cause a small change in 4. Hence the slow
convergence of this small change is only observed at a scale
which is far beyond any practical demand of accuracy. For
higher values of Lg (= X,1/ws) the quantity d3/8X,; can
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Fig. 5. The kinetic inductance Ly of a stripline (see inset) as
a function of the penetration depth X for different strip thicknesses
t(M = 4,N = 800):t = 0.1(+),0.2(0),0.3(v), 0.4 pum(x). The walls
of the box are assumed to be perfectly conducting. The geometrical parameters
are: @ = 846 pm, b = 2000 pm, s = 150 g, and hy = hy = 432 pm.

be integrated to obtain 8, which means that the resultant rate of
convergence of 3 for a specific value of Lg is an accumulation
of the rate of convergence of « for smaller values of Lg.
This explains why (3 is converging slower with the number of
Fourier terms N as Lg increases (Fig. 3).

In order to test the validity of the formulation of Section II-
B for calculating @ and L, we will compare our results with
two other works. Sheen et al. [22] have analyzed a stripline
configuration with a metallization of arbitrary thickness. The
conductors, which obey the two-fluid model, are subdivided
in small patches. From the transmission line equation of the
resultant system of coupled transmission lines, the current
distribution, resistance and inductance of the transmission line
are calculated. We can use the Green’s function of a coplanar
waveguide for an analysis of the stripline configuration by
setting w = 1/2(b — s) and e, = 1. As mentioned before,
the walls are assumed to be perfectly conducting. This is in
contrast to the model of [22], in which the top and bottom
wall are superconducting and the sidewalls are not present.
However, the main contribution to the kinetic inductance Lg
will arise from the central strip, since the currents are most
strongly peaked here. The influence of the sidewalls can be
neglected, provided the distance b between these walls is not
too small. To limit the number of Fourier terms needed we
have performed the calculations with b = 2000 gm. The resuits
for L x on the basis of (43) are presented in Fig. 5 as a function
of the penetration depth A for different thicknesses t(A > t)
of the central strip. Despite the differences in geometry the
agreement with the results of Sheen et al. [22] (Fig. 6) is
good. This strongly indicates the validity of both methods, as
both are based on a different computational scheme.

Pond et al. [5] have calculated the complex propagation
constant v of microstrip lines with very thin superconductors
(t < A), by means of solving equation (37). No numerical
operations in the complex plane are necessary if we use
the alternative expression (40). The results for o, based on

0
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Fig. 6. The normalized attenuation constant of a microstrip line (see in-
set) with a strip of thickness ¢ = 14.5 nm at a frequency f = 1
GHz (M = 4,N = 800). The microstrip line is enclosed in a per-
fectly conducting box., The geometrical parameters are: ¢, = 10.5, and
a =b=100pm,s = 25um,hy = 2.25um, and hg = 97.75 um.
The two-fluid model of Gorter and Casimir is used with 7, = 12.15 K,
Ao = 320 nm, and 6y = 10% (Qm)~ L.

(40), are shown in Fig. 6 and are seen to be in excellent
agreement with Fig. 9 of [5]. Again a different configuration
is handled within the framework of coplanar waveguide, this
time by setting w = 1/2(h — s) and h; — 0. In order to
make the results directly comparable, we have calculated the
absolute value of o by inserting the dependences of the two-
fluid model of Gorter and Casimir, 0, = on(T/T.)* and
A= X/(1 = (T/T)HY?, in Ry1 = (wpo)?N*o,/t. The
conductivity just above the critical temperature is denoted by
One, the zero-temperature penetration depth by Ao.

The foregoing demonstrates that the results of the formula-
tion described in Section II-B and those of other methods are
similar. For everyday use it is convenient to have the disposal
of an empirical relation between the surface impedance and
the propagation constant. For this purpose a description of
Ly /Lg as a function of Lg is sufficient;

LK p(Ls).

Is (46)

Fig. 7 shows the numerical results of Lg/Lg, calculated
according to (43), for different values of w. These data are
very well represented by the function:

F(Ls) — A+ Be~—{0‘14iln(SOLg[nH/m])}C 47)
where A, B, and C are geometry-specific fitting parameters.
For quasi-TEM modes the parameters A, B, and C' depend
only weakly on the dielectric constant (and therefore hy) and
frequency, because the dielectric constant has little effect on
the inductance and because the dispersion is relatively low for
these modes. The parameters also depend on the number of
Fourier terms N. However, in the cases of practical interest,
meaning an appreciable magnitude of Lg, the value of F(Lg)
is changing slowly with N.
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A transmission line model is applicable for structures, which
support a quasi-TEM mode (e.g., microstrip lines and coplanar
waveguides). From such a model we obtain:

- Lx 1/2
/6 - /60 (—f + 1) s

with the wave number Gy of the structure with perfect met-
allization (Ls = 0), and the geometrical inductance L =
(Bo/ko)Zo/ co, which is only moderately dependent on Lg; co
is the phase velocity in free space. Closed-form expressions
are available for the wave number Gy and the characteristic
impedance Zy [23], [24]. From (48) it also is clear that the
influence of Ly is only significant if it is an appreciable
portion of L.

The equations (46) to (48) establish a relation between
and Lg or, equivalently, X ;. Then, invoking (40), o/ Ry is
also known for a particular X,;.

(48)

IV. EXPERIMENTAL RESULTS

We have measured the resonance frequency fy and the
unloaded quality factor (Jg of YBasCuzOr_, coplanar wave-
guide resonators, as described in [25]. The measurements
are performed in the temperature range of 4.2 to 80 K
at excitation levels for which the data are independent of
incident microwave power (—30 dBm). The thin films are
deposited on sapphire substrates by off-axis rf magnetron
sputtering [26]. A c-axis oriented YBagCuzOy7_, layer is
separated from the substrate by a PrBasCuszO7_,, buffer layer,
both layers having a thickness of 50 nm. The buffer layer
blocks the interdiffusion between YBagCuszO7_, and sapphire
effectively [27]. Moreover, the PrBasCu3O7_, material has
similar lattice constants and the same perovskite structure as
YBa;Cu3Or_,, resulting in an improved lattice-match.

The normalized wave number 3/ko = co /2l fo follows from
the resonance frequency fy, the length [ of the resonator, and
the phase velocity ¢y in free space. The relevant length of
the resonator is slightly different from its physical length (5.4
mm) by open-end effects. The wave number ( is influenced
by the field penetration into the superconductor or by the
kinetic inductance of the transmission line. From the numerical
analysis of Section III we have an empirical relation between
fBand Lg = ,uo/\2 /st, which can be inverted to obtain A from
8. We are dealing with small values of Lg/L of the order
of a few percent; the geometrical inductance is evaluated as
L = (Bo/ko)Zo/co = 377 nH/m (s = 0.5 mm, w = 0.2 mm),
using the closed-form expressions of [24], and L is estimated
as Ls = uoA?/st =~ 2 nH/m for A ~ 200 nm, s = 0.5 mm,
and ¢ = 50 nm. If Lg is only a small fraction of I, relatively
small changes in /3 correspond to significant changes in Lg, cf.
(48). This illustrates the difficulty that for small Lg/L both the
wave number for Lg = 0, By, and the length [ of the resonator
need to be known with high accuracy. The former quantity
(Bo) is not known experimentally (Lg # 0 for T — 0), while
it is non-trivial to calculate the latter (!) accurately, since this
involves open-end effects. Moreover, there are more sources of
uncertainty, such as the dielectric anisotropy of sapphire [28].

4
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Fig. 7. The normalized kinetic inductance Ly /Ls as a function of Lg
for coplanar waveguides (Fig. 2). The data points are the spectral domain
results for w = 0.1(+),w = 0.2(0J), and w = 0.5 mm (). The lines
are the result of a fit to (47) with parameters: A = 1.164,B = 2.096,
and ¢ = 3.666(w = 0.1 mm); A = 1.188,B = 1.497, and
C = 3661(w = 02 mm; A = 1173,B = 1.042, and
C = 3.362(w = 0.5 mm).

Therefore a more practical procedure is applied to determine
fBo and 1. The results for A are fitted to the temperature
dependence of the two-fluid model of Gorter and Casimir, A =
Ao/ (1 = (T/T.)*)/2, with the free parameters [, Ao, and 7.
Such a self-consistent treatment of the data is commonly used,
even in cases of a small geometry (delay lines), where much
higher values of Lg/L are possible [29]. The procedure turns
out to be satisfactory, since slightly different values of 3y lead
to somewhat different values of [, but to practically the same
Ao The values of A, B, and C from the empirical relation (47)
are not very critical as well. We use 8/ko = 2.3367, which
is the spectral domain result for s = 0.5 mm, w = 0.2 mm,
hg = 1.135 mm, &, = 10, and f = 10 GHz. The value of h-
follows from the thickness of the sapphire substrate (0.5 mm),
which is surface mounted on an alumina motherboard (25 mil).
The parameters A, B, and C' are only weakly dependent on A3,
as mentioned before, which implies that we can use the values
shown in Fig. 7 (hg = 0.635 mm): A = 1.188, B = 1.497,
and C' = 3.661. Within the same approximation we can ignore
the difference between the frequency used in the calculations
(10 GHz) and the observed resonance frequency (~11 GHz).
In this way we obtain [ = 5.695 mm, Ay = 250 nm, and
7. = 86 K. The critical temperature 7. is consistent with
dc-resistance measurements.

The temperature dependence of the inferred ) is examined in
more detail by plotting the relative change (A(77)— A(0))/A(0)
versus temperature (Fig. 8). Also shown are the temperature
dependencies of the two-fluid model (solid) and the Mattis-
Bardeen (MB) theory [9], for two different values of the energy
gap parameter: 2Ag/kT, = 3.5 (dashed) and 2Ao/kT,. = 4.8
(dot-dashed). The MB temperature dependence of A changes
slowly with the electron mean free path /. The curves shown in
Fig. 8 correspond to [ /7€y = 2. The MB theory is used in the
local limit [30], where the field variation across the size of the
Cooper pairs can be neglected, because the zero-temperature
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Fig. 8. Experimental results of the relative change of the penetration depth,
(A(T) ~ A(0))/A(0), with temperature T'((3). The curves represent the
two-fluid model (solid), and the MB theory with I/xgp = 2, 0 = 140
nm, and the gap parameters 2Aq/kT: = 3.5 (dashed) and 2Ao/kT. = 4.8
(dot-dashed).

coherence length &, is much smaller than the penetration depth
Ap at zero temperature. This limit is appropriate for high-
temperature superconductors, since &y is of the order of a
few nm in these materials, while g is of the order of several
hundred nm. Less clear is the validity of isotropic pairing, as is
assumed in the MB theory. However, a detailed picture of the
coupling in high-temperature superconductors is not available.

The experimental results agree with a gap parameter
200/kT,. = 3.5 for lower temperatures (I' < 0.51,), while
the data for T' = 0.5T are better represented by 2A¢/kT, =
4.8. The value of 3.5 agrees with the BCS weak-coupling
limit [31], the value of 4.8 is comparable to results of other
works, where values of 4.3 to 5 are reported for the same
temperature range [6], [32], [33]. The two-fluid model closely
resembles the MB theory for 2Ay/kT. = 4.8, despite the
usual application of this model to superconductors in the weak-
coupling limit (2A¢/kT, = 3.53). This is caused by the fact
that the zero-temperature penetration depth Ay in the two-fluid
model should be somewhat higher than A in the BCS weak-
coupling limit in order to obtain agreement for temperatures
near 1,.

Thus the results over the entire temperature range are not
consistent with a single-gap BCS temperature dependence,
which confirms the results of [6]. Possibly this can be at-
tributed to the presence of weak links in the material [34], [35],
which also explains the reduced critical temperature T,, = 86
K and the increased penetration depth Aq = 250 nm, compared
to the more or less established intrinsic value Arg = 140 nm
[61, [33]. The influence of weak links is accounted for in a
model of Hylton et al. [36], which predicts that the resultant
penetration depth A = (A2+4+2%)!/2 is modified by an effective
penetration depth Ay o I /2 of the weak lines alone. If we
take the weak-link critical current temperature dependence of
Ambegaokar-Baratoff [37], I. « (A/A¢) tanh (A/2kT), the
temperature dependence of Ay is the same as the dominant
low-temperature MB temperature dependence of Ar. Therefore
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Fig. 9. Experimental results of the surface resistance R, absolute (CI) and
relative to zero-temperature (A). The curves represent the two-fluid model
(solid), and the MB theory with /7§y = 2,X9 = 140 nm, and the gap
parameters 2o /kT. = 3.5 (dashed) and 2A¢ /kT. = 4.8 (dot-dashed).

this temperature dependence does not improve the fit of the
experimental results to a single-gap dependence. However, the
precise change of I, with temperature is open to discussion.

Next we turn to the results of R, which are deduced from
the data Qy. By virtue of Qo = (/2 and (40) we have;
R, = Bt/47Qo088/0Xs1, where R, is the surface resistance
of bulk material, cf. (24). With the application of the empirical
relations (46) to (48) between 8 and Lg (or A), Rs can be
calculated from @y, if A is known. In this case we will use
the two-fluid model of Gorter and Casimir to determine A,
which is reasonable over the entire temperature range (Fig. 8).

Fig. 9 shows the results for s as a function of temperature
(O). As usual, R, decreases rapidly as the temperature is
reduced below T,.. For lower temperatures [, approaches
a constant value, which is an indication of non-intrinsic
behavior. The most likely reasons of this residual Ry are the
losses in the weak links [34], [35] or the dielectric losses
[38]. In any event, the low-temperature value R, = 80 uf2
is much lower than the textbook value of OFHC copper in
the same frequency and temperature range, R; = 5m.
This illustrates the suitability of these films for microwave
applications with a high demand on R, such as delay lines and
high-performance filters. Both the residual R, and T, are in
remarkable agreement with the results of thin films on sapphire
with a SrTiOs buffer layer, reported by Char ef al. [39]
(R, = 65uQ at 10 GHz, which would imply R, = 80 uf}
at 11 GHz according to a quadratic frequency dependence,
and a superconducting transition at 87 K with a 1 K transition
width). Also shown in Fig. 9 are the results for R, with the
zero-temperature value subtracted, R;(1) — R,+(0), (A). The
aim of this operation is to cancel the non-intrinsic losses,
although the temperature dependence of these losses is not
necessarily negligible. The data of R.(T)—R,(0) at the lowest
temperatures should be interpreted with some caution, since
the relative errors become large for small differences.

The solid curve represents the two-fluid model with the
parameters Ao = 250 nm and oy, = 3 - 10% (Qm)~!, where
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One 1s the conductivity just above 1. The other two curves are
the results of the MB theory for {/w&y = 2, Ag = 140 nm, and
gap values 2A¢/kT, = 3.5 (dashed) and 2A/ k7, = 4.8 (dot-
dashed). The calculations are performed at 11 GHz; the 2%
change of the observed resonance frequency with temperature
is neglected. In order to match the two-fluid model and the
MB theory near 1., we need a higher value of o, at 11 GHz
than Drabeck et al. [32] at 100 GHz (1.5 - 107¢ (Qm)~%).
This is caused by the additional MB frequency dependence
In (kT /hw) of the surface resistance (Aw < kT'), which
illustrates that we should not take the value of o,,. too serious.
The experimental results close to 7, are well represented
by 2A¢/kT. = 4.8. In this temperature range the value
of l/né&y = 2 is found to give the best agreement with
the experimental results. The data at lower temperatures are
better described by the other gap parameter 2Aq/kT, = 3.5,
although it can not be concluded decisively that this is the
correct value of the gap for lower temperatures. However the
discrepancy with the experimental results is limited in view
of the margins of error and the neglect of the influence of
temperature with respect to the weak links.

V. CONCLUSIONS

We have analyzed the surface impedance of an infinite
normal or superconducting film of arbitrary thickness. The
surface reactance X, of very thin superconducting films (¢ <
A) is increased by a factor A/t compared to X, of relatively
thick films (¢ > A). The surface resistance R, and the kinetic
inductance Ly are increased by a factor 2A/t. The analysis
also shows that in the case of very thin films the boundary
conditions for the field agree with the complex boundary
conditions [5], which are used in a modification of the spectral
domain analysis of different wave-guiding structures.

The influence of the surface impedance Z, on the prop-
agation constant v = « + j( is investigated by means of
the modified spectral domain method. We found expressions
which allow an efficient calculation of the attenuation constant
a and the kinetic inductance Ly . An empirical model of the
relation between the wave number 0 and Lj is presented,
which describes the exact results very well.

This model is used to determine the penetration depth
A and the surface resistance R, from the experimental re-
sults for the resonance frequency and the unloaded qual-
ity factor of YBayCuzO7_, coplanar waveguide resonators.
The YBay,CuszOr_, layers are deposited on sapphire with
a PrBasCu3zOr7_, buffer layer. The observation of a low
residual surface resistance, Ry = 80 uf2, supports the con-
clusion from other work [27], that the buffer layer prevents
interdiffusion, while constituting a suitable basis for epitaxial
growth of YBasCuzOr_,.

The results indicate that the temperature dependence of A
and R, is not characterized by a single-gap BCS tempera-
ture dependence. For lower temperatures a conventional BCS
weak-coupling gap value 2A¢/kT, = 3.52 seems appropriate,
while 2A¢/kT. = 4.8 describes our findings for higher
temperatures. Our results suggest an electron free mean path
value [/m€y = 2. The origins of non-BCS behavior have

been interpreted in terms of weak links. However, other
interpretations [40] can not be ruled out, since the coupling-
mechanism for electrons in high-temperature superconductors
is not clearly understood.
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